Ja n 20 06 Decay to the nonequilibrium steady state of the thermal diffusion in a tilted periodic potential

نویسندگان

  • T. Monnai
  • A. Sugita
  • J. Hirashima
  • K. Nakamura
چکیده

We investigate asymptotic decay phenomenon towards the nonequilibrium steady state of the thermal diffusion in the presence of a tilted periodic potential. The parameter dependence of the decay rate is revealed by investigating the Fokker-Planck (FP) equation in the low temperature case under the spatially periodic boundary condition (PBC). We apply the WKB method to the associated Schrödinger equation. While eigenvalues of the non-Hermitian FP operator are complex in general, in a small tilting case the imaginary parts of the eigenvalues are almost vanishing. Then the Schrödinger equation is solved with PBC. The decay rate is analyzed in the context of quantum tunneling through a triple-well effective periodic potential. In a large tilting case, the imaginary parts of the eigenvalues of FP operator are crucial. We apply the complex-valued WKB method to the Schrödinger equation with the absorbing boundary condition, finding that the decay rate saturates and depends only on the temperature, the potential periodicity and the viscous constant. The intermediate tilting case is also explored. The analytic results agree well with the numerical data for a wide range of tilting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Colloidal dynamics over a tilted periodic potential: Nonequilibrium steady-state distributions.

We report a systematic study of the effects of the external force F on the nonequilibrium steady-state (NESS) dynamics of the diffusing particles over a tilted periodic potential, in which detailed balance is broken due to the presence of a steady particle flux. A tilted two-layer colloidal system is constructed for this study. The periodic potential is provided by the bottom-layer colloidal sp...

متن کامل

Thermal Diffusion Factor in Gas Mixture-Dufour Effect (I)

The thermal diffusion factor, aT, for a binary gas mixture is calculated on the basis of nonequilibrium thermodynamics. A new formula for aT is derived and this factor is given for several paris of gases according to this formula.

متن کامل

Diffusion in tilted periodic potentials: Enhancement, universality, and scaling.

An exact analytical expression for the effective diffusion coefficient of an overdamped Brownian particle in a tilted periodic potential is derived for arbitrary potentials and arbitrary strengths of the thermal noise. Near the critical tilt (threshold of deterministic running solutions) a scaling behavior for weak thermal noise is revealed and various universality classes are identified. In co...

متن کامل

Use of semi empirical method for determination of the activation energy of thermal decomposition of vinyl ethers

In this research, a semi empirical approach has been suggested for calculating the activation energyof unimolecular thermal decomposition of vinyl ethers yielding saturated products. The calculationprocedure is based on the use of molecular mechanics (MM) methods. These methods which involvethe construction of the transition state for a molecule mainly consider the formation of a “HydrogenBridg...

متن کامل

Weak disorder strongly improves the selective enhancement of diffusion in a tilted periodic potential.

The diffusion of an overdamped Brownian particle in a tilted periodic potential is known to exhibit a pronounced enhancement over the free thermal diffusion within a small interval of tilt values. Here we show that weak disorder in the form of small, time-independent deviations from a strictly spatially periodic potential may further boost this diffusion peak by orders of magnitude. Our general...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006